Rings with no Maximal Ideals

نویسنده

  • Patrick J. Morandi
چکیده

In this note we give examples of a ring that has no maximal ideals. Recall that, by a Zorn’s lemma argument, a ring with identity has a maximal ideal. Therefore, we need to produce examples of rings without identity. To help motivate our examples, let S be a ring without identity. We may embed S in a ring R with identity so that S is an ideal of R. Notably, set R = Z⊕S, as groups, and where multiplication is given by (n, s)·(m, t) = (nm, nt+ms+st). It is easy to show that R is indeed a ring, that (1, 0) is the identity of this ring, and that {(0, s) : s ∈ S} is an ideal of R that is isomorphic, as a ring, to S. Thus, any ring without identity may be viewed as an ideal in a ring with identity. We will then search for ideals in rings with identity as candidates for rings with no maximal ideals. The most common example in textbooks of a ring with no maximal ideals is to start with the group Z(p∞), which is the subgroup of Q/Z of elements of order a power of the prime p. It is known that the subgroups of Z(p∞) form an infinite increasing chain, and so there is no maximal subgroup. By defining multiplication in Z(p∞) by x · y = 0, this group becomes a ring with no maximal ideals. However, there are simpler examples of groups with no maximal subgroups. In fact, we prove in the proposition below that any divisible group has no maximal subgroups. To prove the proposition, we prove the following lemma, which is a common problem in an introductory group theory course. A group is said to be simple if it has no nontrivial normal subgroups. If the group is Abelian, then this is equivalent to the group having no nontrivial subgroups. From the fundamental homomorphism theorems, if A is a subgroup of an Abelian group G, then the subgroups of G/A are in 1-1 correspondence with the subgroups of G that contain A. Thus, if A is a maximal subgroup of G, then G/A is simple.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on maximal non-prime ideals

The rings considered in this article are commutative with identity $1neq 0$. By a proper ideal of a ring $R$,  we mean an ideal $I$ of $R$ such that $Ineq R$.  We say that a proper ideal $I$ of a ring $R$ is a  maximal non-prime ideal if $I$ is not a prime ideal of $R$ but any proper ideal $A$ of $R$ with $ Isubseteq A$ and $Ineq A$ is a prime ideal. That is, among all the proper ideals of $R$,...

متن کامل

VAGUE RINGS AND VAGUE IDEALS

In this paper, various elementary properties of vague rings are obtained. Furthermore, the concepts of vague subring, vague ideal, vague prime ideal and vague maximal ideal are introduced, and the validity of some relevant classical results in these settings are investigated.

متن کامل

Projective maximal submodules of extending regular modules

We show  that a projective maximal submodule of afinitely generated, regular, extending module is a directsummand. Hence, every finitely generated, regular, extendingmodule with projective maximal submodules is semisimple. As aconsequence, we observe that every regular, hereditary, extendingmodule is semisimple. This generalizes and simplifies a result of  Dung and   Smith. As another consequen...

متن کامل

On $z$-ideals of pointfree function rings

Let $L$ be a completely regular frame and $mathcal{R}L$ be the ‎ring of continuous real-valued functions on $L$‎. ‎We show that the‎ ‎lattice $Zid(mathcal{R}L)$ of $z$-ideals of $mathcal{R}L$ is a‎ ‎normal coherent Yosida frame‎, ‎which extends the corresponding $C(X)$‎ ‎result of Mart'{i}nez and Zenk‎. ‎This we do by exhibiting‎ ‎$Zid(mathcal{R}L)$ as a quotient of $Rad(mathcal{R}L)$‎, ‎the‎ ‎...

متن کامل

ON COMMUTATIVE GELFAND RINGS

A ring is called a Gelfand ring (pm ring ) if each prime ideal is contained in a unique maximal ideal. For a Gelfand ring R with Jacobson radical zero, we show that the following are equivalent: (1) R is Artinian; (2) R is Noetherian; (3) R has a finite Goldie dimension; (4) Every maximal ideal is generated by an idempotent; (5) Max (R) is finite. We also give the following resu1ts:an ideal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005